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LP coefficients for each segment of the data. The output is reconstructed
by driving these coefficients with initial conditions consisting of all zeros
except for one nonzero spike. A speech synthesizer chip may have of
order 10 LP coefficients, which change perhaps 20 to 50 times per second.

• Some people believe that it is interesting to analyze a signal by LPC, even
when the residuals xi are not small. The xi’s are then interpreted as the
underlying “input signal” which, when filtered through the all-poles filter
defined by the LP coefficients (see §13.7), produces the observed “output
signal.” LPC reveals simultaneously, it is said, the nature of the filter and
the particular input that is driving it. We are skeptical of these applications;
the literature, however, is full of extravagant claims.
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13.7 Power Spectrum Estimation by the
Maximum Entropy (All Poles) Method

The FFT is not the only way to estimate the power spectrum of a process, nor is it
necessarily the best way for all purposes. To see how one might devise another method,
let us enlarge our view for a moment, so that it includes not only real frequencies in the
Nyquist interval −fc < f < fc, but also the entire complex frequency plane. From that
vantage point, let us transform the complex f -plane to a new plane, called the z-transform
plane or z-plane, by the relation

z ≡ e2πif∆ (13.7.1)

where ∆ is, as usual, the sampling interval in the time domain. Notice that the Nyquist interval
on the real axis of the f -plane maps one-to-one onto the unit circle in the complex z-plane.

If we now compare (13.7.1) to equations (13.4.4) and (13.4.6), we see that the FFT
power spectrum estimate (13.4.5) for any real sampled function ck ≡ c(tk) can be written,
except for normalization convention, as

P (f) =

∣∣∣∣∣∣
N/2−1∑

k=−N/2

ckzk

∣∣∣∣∣∣
2

(13.7.2)

Of course, (13.7.2) is not the true power spectrum of the underlying function c(t), but only an
estimate. We can see in two related ways why the estimate is not likely to be exact. First, in the
time domain, the estimate is based on only a finite range of the function c(t) which may, for all
we know, have continued from t = −∞ to ∞. Second, in the z-plane of equation (13.7.2), the
finite Laurent series offers, in general, only an approximation to a general analytic function of
z. In fact, a formal expression for representing “true” power spectra (up to normalization) is

P (f) =

∣∣∣∣∣
∞∑

k=−∞
ckzk

∣∣∣∣∣
2

(13.7.3)
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This is an infinite Laurent series which depends on an infinite number of values ck. Equation
(13.7.2) is just one kind of analytic approximation to the analytic function of z represented
by (13.7.3); the kind, in fact, that is implicit in the use of FFTs to estimate power spectra by
periodogram methods. It goes under several names, including direct method, all-zero model,
and moving average (MA) model. The term “all-zero” in particular refers to the fact that the
model spectrum can have zeros in the z-plane, but not poles.

If we look at the problem of approximating (13.7.3) more generally it seems clear that
we could do a better job with a rational function, one with a series of type (13.7.2) in both the
numerator and the denominator. Less obviously, it turns out that there are some advantages in
an approximation whose free parameters all lie in the denominator, namely,

P (f) ≈ 1∣∣∣∣∣
M/2∑

k=−M/2

bkzk

∣∣∣∣∣
2 =

a0∣∣∣∣1 +
M∑

k=1

akzk

∣∣∣∣
2 (13.7.4)

Here the second equality brings in a new set of coefficients ak’s, which can be determined
from the bk’s using the fact that z lies on the unit circle. The bk’s can be thought of as
being determined by the condition that power series expansion of (13.7.4) agree with the
first M + 1 terms of (13.7.3). In practice, as we shall see, one determines the bk’s or
ak’s by another method.

The differences between the approximations (13.7.2) and (13.7.4) are not just cosmetic.
They are approximations with very different character. Most notable is the fact that (13.7.4)
can have poles, corresponding to infinite power spectral density, on the unit z-circle, i.e., at
real frequencies in the Nyquist interval. Such poles can provide an accurate representation
for underlying power spectra that have sharp, discrete “lines” or delta-functions. By contrast,
(13.7.2) can have only zeros, not poles, at real frequencies in the Nyquist interval, and must
thus attempt to fit sharp spectral features with, essentially, a polynomial. The approximation
(13.7.4) goes under several names: all-poles model, maximum entropy method (MEM),
autoregressive model (AR). We need only find out how to compute the coefficients a0 and the
ak’s from a data set, so that we can actually use (13.7.4) to obtain spectral estimates.

A pleasant surprise is that we already know how! Look at equation (13.6.11) for linear
prediction. Compare it with linear filter equations (13.5.1) and (13.5.2), and you will see that,
viewed as a filter that takes input x’s into output y’s, linear prediction has a filter function

H(f) =
1

1 −
N∑

j=1

djz−j

(13.7.5)

Thus, the power spectrum of the y’s should be equal to the power spectrum of the x’s
multiplied by |H(f)|2. Now let us think about what the spectrum of the input x’s is, when
they are residual discrepancies from linear prediction. Although we will not prove it formally,
it is intuitively believable that the x’s are independently random and therefore have a flat
(white noise) spectrum. (Roughly speaking, any residual correlations left in the x’s would
have allowed a more accurate linear prediction, and would have been removed.) The overall
normalization of this flat spectrum is just the mean square amplitude of the x’s. But this is
exactly the quantity computed in equation (13.6.13) and returned by the routine memcof as
xms. Thus, the coefficients a0 and ak in equation (13.7.4) are related to the LP coefficients
returned by memcof simply by

a0 = xms ak = −d(k), k = 1, . . . , M (13.7.6)

There is also another way to describe the relation between the ak’s and the autocorrelation
components φk. The Wiener-Khinchin theorem (12.0.12) says that the Fourier transform of
the autocorrelation is equal to the power spectrum. In z-transform language, this Fourier
transform is just a Laurent series in z. The equation that is to be satisfied by the coefficients
in equation (13.7.4) is thus

a0∣∣∣∣1 +
M∑

k=1

akzk

∣∣∣∣
2 ≈

M∑
j=−M

φjz
j (13.7.7)
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The approximately equal sign in (13.7.7) has a somewhat special interpretation. It means
that the series expansion of the left-hand side is supposed to agree with the right-hand side
term by term from z−M to zM . Outside this range of terms, the right-hand side is obviously
zero, while the left-hand side will still have nonzero terms. Notice that M , the number of
coefficients in the approximation on the left-hand side, can be any integer up to N , the total
number of autocorrelations available. (In practice, one often chooses M much smaller than
N .) M is called the order or number of poles of the approximation.

Whatever the chosen value of M , the series expansion of the left-hand side of (13.7.7)
defines a certain sort of extrapolation of the autocorrelation function to lags larger than M , in
fact even to lags larger than N , i.e., larger than the run of data can actually measure. It turns
out that this particular extrapolation can be shown to have, among all possible extrapolations,
the maximum entropy in a definable information-theoretic sense. Hence the name maximum
entropy method, or MEM. The maximum entropy property has caused MEM to acquire a
certain “cult” popularity; one sometimes hears that it gives an intrinsically “better” estimate
than is given by other methods. Don’t believe it. MEM has the very cute property of
being able to fit sharp spectral features, but there is nothing else magical about its power
spectrum estimates.

The operations count in memcof scales as the product of N (the number of data points)
and M (the desired order of the MEM approximation). If M were chosen to be as large as
N , then the method would be much slower than the N log N FFT methods of the previous
section. In practice, however, one usually wants to limit the order (or number of poles) of the
MEM approximation to a few times the number of sharp spectral features that one desires it
to fit. With this restricted number of poles, the method will smooth the spectrum somewhat,
but this is often a desirable property. While exact values depend on the application, one
might take M = 10 or 20 or 50 for N = 1000 or 10000. In that case MEM estimation is
not much slower than FFT estimation.

We feel obliged to warn you that memcof can be a bit quirky at times. If the number of
poles or number of data points is too large, roundoff error can be a problem, even in double
precision. With “peaky” data (i.e., data with extremely sharp spectral features), the algorithm
may suggest split peaks even at modest orders, and the peaks may shift with the phase of the
sine wave. Also, with noisy input functions, if you choose too high an order, you will find
spurious peaks galore! Some experts recommend the use of this algorithm in conjunction with
more conservative methods, like periodograms, to help choose the correct model order, and to
avoid getting too fooled by spurious spectral features. MEM can be finicky, but it can also do
remarkable things. We recommend that you try it out, cautiously, on your own problems. We
now turn to the evaluation of the MEM spectral estimate from its coefficients.

The MEM estimation (13.7.4) is a function of continuously varying frequency f . There
is no special significance to specific equally spaced frequencies as there was in the FFT
case. In fact, since the MEM estimate may have very sharp spectral features, one wants
to be able to evaluate it on a very fine mesh near to those features, but perhaps only more
coarsely farther away from them. Here is a subroutine which, given the coefficients already
computed, evaluates (13.7.4) and returns the estimated power spectrum as a function of f∆
(the frequency times the sampling interval). Of course, f∆ should lie in the Nyquist range
between −1/2 and 1/2.

FUNCTION evlmem(fdt,d,m,xms)
INTEGER m
REAL evlmem,fdt,xms,d(m)

Given d, m, xms as returned by memcof, this function returns the power spectrum estimate
P (f) as a function of fdt = f∆.

INTEGER i
REAL sumi,sumr
DOUBLE PRECISION theta,wi,wpi,wpr,wr,wtemp Trigonometric recurrences in double

precision.theta=6.28318530717959d0*fdt
wpr=cos(theta) Set up for recurrence relations.
wpi=sin(theta)
wr=1.d0
wi=0.d0
sumr=1. These will accumulate the denominator of (13.7.4).
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Figure 13.7.1. Sample output of maximum entropy spectral estimation. The input signal consists of
512 samples of the sum of two sinusoids of very nearly the same frequency, plus white noise with about
equal power. Shown is an expanded portion of the full Nyquist frequency interval (which would extend
from zero to 0.5). The dashed spectral estimate uses 20 poles; the dotted, 40; the solid, 150. With the
larger number of poles, the method can resolve the distinct sinusoids; but the flat noise background is
beginning to show spurious peaks. (Note logarithmic scale.)

sumi=0.
do 11 i=1,m Loop over the terms in the sum.

wtemp=wr
wr=wr*wpr-wi*wpi
wi=wi*wpr+wtemp*wpi
sumr=sumr-d(i)*sngl(wr)
sumi=sumi-d(i)*sngl(wi)

enddo 11

evlmem=xms/(sumr**2+sumi**2) Equation (13.7.4).
return
END

Be sure to evaluate P (f) on a fine enough grid to find any narrow features that may
be there! Such narrow features, if present, can contain virtually all of the power in the data.
You might also wish to know how the P (f) produced by the routines memcof and evlmem is
normalized with respect to the mean square value of the input data vector. The answer is

∫ 1/2

−1/2

P (f∆)d(f∆) = 2

∫ 1/2

0

P (f∆)d(f∆) = mean square value of data (13.7.8)

Sample spectra produced by the routines memcof and evlmem are shown in Figure 13.7.1.
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13.8 Spectral Analysis of Unevenly Sampled
Data

Thus far, we have been dealing exclusively with evenly sampled data,

hn = h(n∆) n = . . . ,−3,−2,−1, 0, 1, 2, 3, . . . (13.8.1)

where ∆ is the sampling interval, whose reciprocal is the sampling rate. Recall also (§12.1)
the significance of the Nyquist critical frequency

fc ≡ 1

2∆
(13.8.2)

as codified by the sampling theorem: A sampled data set like equation (13.8.1) contains
complete information about all spectral components in a signal h(t) up to the Nyquist
frequency, and scrambled or aliased information about any signal components at frequencies
larger than the Nyquist frequency. The sampling theorem thus defines both the attractiveness,
and the limitation, of any analysis of an evenly spaced data set.

There are situations, however, where evenly spaced data cannot be obtained. A common
case is where instrumental drop-outs occur, so that data is obtained only on a (not consecutive
integer) subset of equation (13.8.1), the so-called missing data problem. Another case,
common in observational sciences like astronomy, is that the observer cannot completely
control the time of the observations, but must simply accept a certain dictated set of ti’s.

There are some obvious ways to get from unevenly spaced ti’s to evenly spaced ones, as
in equation (13.8.1). Interpolation is one way: lay down a grid of evenly spaced times on your
data and interpolate values onto that grid; then use FFT methods. In the missing data problem,
you only have to interpolate on missing data points. If a lot of consecutive points are missing,
you might as well just set them to zero, or perhaps “clamp” the value at the last measured point.
However, the experience of practitioners of such interpolation techniques is not reassuring.
Generally speaking, such techniques perform poorly. Long gaps in the data, for example,
often produce a spurious bulge of power at low frequencies (wavelengths comparable to gaps).

A completely different method of spectral analysis for unevenly sampled data, one that
mitigates these difficulties and has some other very desirable properties, was developed by
Lomb [1], based in part on earlier work by Barning [2] and Vanı́ček [3], and additionally
elaborated by Scargle [4]. The Lomb method (as we will call it) evaluates data, and sines
and cosines, only at times ti that are actually measured. Suppose that there are N data
points hi ≡ h(ti), i = 1, . . . , N . Then first find the mean and variance of the data by
the usual formulas,

h ≡ 1

N

N∑
1

hi σ2 ≡ 1

N − 1

N∑
1

(hi − h)2 (13.8.3)

Now, the Lomb normalized periodogram (spectral power as a function of angular
frequency ω ≡ 2πf > 0) is defined by

PN(ω) ≡ 1

2σ2




[∑
j(hj − h) cos ω(tj − τ )

]2

∑
j cos2 ω(tj − τ )

+

[∑
j(hj − h) sin ω(tj − τ )

]2

∑
j sin2 ω(tj − τ )




(13.8.4)


